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Abstract
Multi-modal recommender systems (MRSs) have achieved notable
success in improving personalization by leveraging diverse modali-
ties such as images, text, and audio. However, two key challenges
remain insufficiently addressed: (1) Insufficient consideration of
missing modality scenarios and (2) the overlooking of unique char-
acteristics of modality features. These challenges result in signifi-
cant performance degradation in realistic situations where modali-
ties are missing. To address these issues, we propose Disentangling
and GeneratingModality Recommender (DGMRec), a novel frame-
work tailored formissingmodality scenarios.DGMRec disentangles
modality features into general and specific modality features from
an information-based perspective, enabling richer representations
for recommendation. Building on this, it generates missingmodality
features by integrating aligned features from other modalities and
leveraging user modality preferences. Extensive experiments show
that DGMRec consistently outperforms state-of-the-art MRSs in
challenging scenarios, including missing modalities and new item
settings as well as diverse missing ratios and varying levels of miss-
ing modalities. Moreover, DGMRec’s generation-based approach
enables cross-modal retrieval, a task inapplicable for existing MRSs,
highlighting its adaptability and potential for real-world applica-
tions. Our code is available at https://github.com/ptkjw1997/DGMRec.

CCS Concepts
• Information systems→ Recommender systems.
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(a) Performance comparison (b) Difference of recommendation scores and performance

Figure 1: (a) Performance drop of recent MRSs when missing
modality exists. (b) Difference between the model’s recom-
mendation scores under two conditions: when the modal-
ity exists (Original Image/Text) and when the modality is
missing (NN-Injected Image/Text). Line plots indicate the
performance of LGMRec [6].
SIGIR Conference on Research andDevelopment in Information Retrieval (SIGIR
’25), July 13–18, 2025, Padua, Italy. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3726302.3729953

1 Introduction
In recent years, e-commerce platforms such as Amazon and Al-
ibaba, as well as social media services like YouTube and TikTok,
have become an integral part of everyday life. Their recommen-
dation systems play a pivotal role in shaping user behavior and
decision-making. In particular, traditional methods using Collab-
orative Filtering (CF), such as Matrix Factorization (MF) [18] or
Graph Neural Networks (GNNs) [9, 22], have successfully delivered
personalized recommendations, making these systems increasingly
important for both customers and businesses.

While collaborative filtering (CF) models have proven successful,
they are still constrained by the inherent sparsity of user feedback
[36]. To address this, the integration of diverse modalities, such
as images, text, and audio, has emerged as a promising solution,
complementing the lack of feedback and enabling a deeper under-
standing of user preferences compared to traditional CF approaches.
This has driven the development of multi-modal recommender sys-
tems (MRSs), which leverage multi-modal content to derive rich
semantic representations and uncover relationships between items
that CF models alone cannot achieve.

Although MRSs have demonstrated their effectiveness, several
practical challenges remain insufficiently addressed.

C1. Missing modality scenarios are not sufficiently ad-
dressed. Prior MRSs generally assume that all modality features
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of an item are always fully available. However, in the real-world
industry, some or all modality features of an item may be missing
[3]. Specifically, existing studies in MRSs often address the missing
modality scenarios by either 1) simply dropping out the items with
missing-modality features from the training dataset [28, 36] or 2)
injecting synthetic features for missing modalities (e.g., using the
global mean of a modality [14] or the nearest neighbor mean (NN)
[13]). Although injection methods are shown to be effective [13],
they still encounter a significant performance drop under missing
modality scenarios. In Figure 1(a), we compared the performance
of several MRSs that assume all modality features are available,
including early models (i.e., VBPR [8] and LATTICE [34]) as well
as state-of-the-art (SOTA) models (i.e., LGMRec [6], DAMRS [29],
and GUME [11]), on the Amazon Baby dataset under two scenarios:
one where all modalities are available and the other where some
modalities are randomly missing1. We found that such a naive in-
jection approach still experiences significant performance drop in
the presence of missing modalities.

To investigate why the NN-injection method fails to prevent the
performance drop under missing modality, we analyze its impact
on the model prediction of a recent MRS, LGMRec [6]. In Figure
1(b), we calculate the difference in recommendation scores of a
positive user–item pair between scenarios where the item includes
all modality features and where a specific modality feature (either
image or text) is missing1, and sort them in descending order. We
also divided the positive user–item pairs into four groups based on
their sorted differences, and evaluated the recommendation perfor-
mance for each group (in the line plot). We observe that the drop in
the recommendation performance under missing modality (i.e., red
line - blue line) is more severe when the difference of the recommen-
dation scores is larger. Since a difference of the recommendation
scores indicates how well the NN-injected feature captures the
original modality (i.e., the smaller the better), this result implies
that the poor recommendation performance is originated from the
NN-injected feature failing to successfully substitute the original
modality. The performance degradation under missing modality ex-
acerbates in recent SOTA MRSs that heavily rely on item modality
features.

C2. Unique characteristics of modalities are overlooked.
ExistingMRSs [6, 11] generally aim to directly align among different
modalities of an item, assuming that the features of various modal-
ities for the same item inherently share semantics. However, this
assumption does not always hold. Specifically, the image modality
tends to capture visual attributes such as color and style, emphasiz-
ing the tangible and aesthetic aspects of an item. In contrast, the
text modality conveys descriptive and contextual information, high-
lighting functional attributes or background details. This indicates
that each modality contains unique, modality-specific information
that cannot be fully captured by other modalities. For this reason,
directly aligning different modalities of an item as in prior studies
[6, 11] fails to account for these distinct characteristics, hindering
the development of high-quality item representations.

In fact, an existing MRS, LGMRec [6], failing to capture the
modality-specific information can be observed by closely examin-
ing the difference of the recommendation scores of Group 3 and 4

1The missing modality feature is injected based on the NN-injection approach [13].

in Figure 1(b), where the sign of the red and the blue bars are the
opposite (See the zoomed part). We argue that the items with the op-
posite sign in the red and blue bars are those that LGMRec failed to
account for the unique characteristics of the text and image modal-
ities. More precisely, as the injected features can be considered as
the features commonly shared by all items, the difference in the
recommendation scores can be interpreted as the distinct modality-
specific information that remains for an item after accounting for
the commonly shared features. However, as the injected features
cannot be perfectly representative of the globally shared common
features of a certain modality, the difference of the recommendation
scores would contain not only the modality-specific information
but also generally shared information within a modality of an item.
From this perspective, the positive difference observed for text (red
bars) indicates that the remaining information in text is informative
to the model’s predictions, whereas the negative difference in image
(blue bars) suggests the information retained in images less helpful
or may even hinder the predictions. This contrast that is present for
an item arises because the modality-specific information provided
by text and image modalities differs significantly. These observa-
tions highlight that each modality contains unique information
that is neither shared nor aligned with other modalities. Hence,
in these cases, forcing alignment between modalities can obscure
their unique contributions and adversely affect recommendation
performance.

While there has been some research on missing-modality aware
recommender systems (MMA-RSs) [1, 5, 12, 21] to address the re-
alistic challenge of missing modalities, these approaches primar-
ily focus on the robustness of the models when handling items
with missing modalities. However, because they use the missing
modalities in their incomplete state without addressing them, these
methods fail to leverage the unique characteristics inherent to each
modality. Additionally, since they mainly rely on content-based
approaches, they tend to underperform conventional collaborative
filtering (CF) methods in general performance, limiting their practi-
cal applicability despite their effort to handle real-world challenges.

To overcome the inherent limitations of MRSs and MMA-RSs,
we propose a novel model called Disentangling and Generating
Modality Recommender (DGMRec), which effectively addresses
the challenges of handling missing modality features and extracting
common and unique characteristics of modalities.

C1: To handle missing modality features, DGMRec employs
an autoencoder architecture to reconstruct an item’s modality fea-
tures to closely resemble the actual ones, ensuring the preservation
of the item’s distinct attributes. For items with missing modalities,
DGMRec generates modality features by leveraging two sources of
knowledge: aligned features from other available modalities and
interacted users’ modality preferences. Using generated features,
DGMRec enhances the item-item graph, achieving more robust and
richer semantic relations between items, which existing models
have struggled to capture when missing modality exists.

C2: To extract common and unique modality features,
DGMRec derives general and specific modality features using sepa-
rate encoders. Additionally, it employs two information-based loss
functions to disentangle the general and specific features within a
single modality while simultaneously learning shared traits across
different modalities.
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These two challenges are closely interconnected, as disentan-
gling modality attributes directly impacts the quality of feature
generation for accurately representing an item.

Our contributions are summarized as follows:
• We identify and analyze the significant performance degradation
of current MRSs in missing modality scenarios, highlighting the
inadequacy of naive injection methods as the core limitation.

• We propose a robust generation-based approach that reconstructs
missing modalities by leveraging an item’s distinct characteris-
tics, enabling DGMRec to achieve superior performance across
diverse real-world scenarios.

• The proposed fine-grained missing modality feature generation
enables DGMRec to perform additional tasks, such as cross-
modal retrieval, to assist user behavior in missing scenarios,
which remains unattainable for existing recommenders.

• We introduce a novel approach from the perspective of mutual
information to separate and learn general and specific modality
features.

2 Related Works
2.1 Multi-modal Recommender Systems
Multi-modal Recommenders (MRSs) leverage multi-modal content
in various ways. (1) Feature-based approaches that directly uti-
lize features have been extensively studied. For instance, VBPR [8]
integrates visual features directly with ID embeddings. Similarly,
methods such as SLMRec [19], GRCN [24], and MMGCN [25] use
graph convolution networks (GCNs) to integrate modality knowl-
edge with CF knowledge. BM3 [39] employs contrastive views of
modalities for self-supervised learning, while LGMRec [6] adopts
a hybrid approach by utilizing both hypergraphs and local graphs
to balance the learning of global and local knowledge in modality
feature extraction. On the other hand, (2) Graph-based approaches
focus on identifying relationships between items based on modal-
ity features rather than directly utilizing these features. Notable
examples include LATTICE [34], MICRO [35], FREEDOM [38], and
DAMRS [29]. Recently, (3) Hybrid approaches combining both
strategies have emerged. For instance, GUME [11] and MGCN [31]
simultaneously leverage modality features and item-item graphs.

These MRSs have benefited significantly from multi-modal align-
ment. However, existing methods either completely disregard the
relationships between modalities [19, 39] or rely solely on direct
alignment to extract shared information between modalities [6, 11].
As a result, the unique information inherent to different modalities
is often overlooked and remains unlearned. Some recent works
have highlighted the importance of unique modality features for
the qualitative representation of items and have adopted orthog-
onal learning methods from other domains [11, 31, 32]. However,
their simplistic approach—taking the mean of modality features as
shared commonality and substituting it with the modality features
for the unique features—lacks sufficient logical justification from
an informational perspective.

2.2 Missing Modality-Aware Recommender
Systems

Most existing MRSs assume that all modalities are available and
complete, which is rarely the case in real-world applications. Miss-
ing modality-aware recommender systems (MMA-RSs) address

these challenges by considering two common scenarios: (1) In-
complete Modality, where some feature values are missing in
a modality [21, 27, 40], and (2) Missing Modality, where an en-
tire modality is unavailable [1, 5, 12, 13]. MILK [1] and SIBRAR
[5] tackle missing modalities by leveraging invariant learning and
single-branch networks to make robust recommendations without
directly addressing the missing modality. Alternatively, [13] inves-
tigates which features can serve as effective substitutes for missing
modalities while leaving the model architecture largely unchanged.
However, most MMA-RS methods not only fail to effectively cap-
ture CF knowledge due to their content-based architecture but also
rely on naive approaches that lack sufficient consideration of the
unique characteristics of each modality, resulting in suboptimal
overall performance. In this regard, the work most aligned with our
motivation is CI2MG [12], which utilizes hypergraphs and optimal
transport (OT) to generate missing modalities. However, CI2MG
suffers from significant computational overhead in calculating OT
and lacks integration between the OT process and other recommen-
dation modules.

3 Methodology
To accurately generate missing modalities that reflect the distinct
characteristics of items, it is essential to consider both the general
(shared) and specific (unique) features of modalities. To achieve this,
we propose a Disentangling Modality Feature module (Sec 3.2),
which uses separate encoders to extract general and specific fea-
tures. Additionally, we introduce information-based losses to disen-
tangle these features and ensure the alignment of general features
across modalities.

Subsequently, to extract meaningful modality representations
and construct item-item graphs in the presence of missing modali-
ties, we propose a Missing Modality Generation module (Sec-
tion 3.3), which generates general and specific features that capture
the distinct characteristics of items in a fine-grained manner and
adaptively refines the item-item graph using these generated fea-
tures.

Finally, while modality features are effective in capturing se-
mantic content, they lack the collaborative knowledge critical for
recommendation tasks [10, 33]. To mitigate this, we introduce two
additional alignment methods (Section 3.4) to connect user repre-
sentations with item representations, thereby bridging collaborative
filtering with modality features.

3.1 Preliminaries
LetU and I denote the sets of users and items, with |U| and |I |
representing the number of users and items, respectively. The User-
Item Interaction matrix is defined as R = R |U |× |I | . Each item’s
modality feature is extracted using pre-trained models (i.e., image
with a CNN model [7] and text with a SBERT [17]) and represented
as 𝑋𝑚 ∈ R | I |×𝑑𝑚 , where missing modality features are initialized
with their mean values. Additionally, the ID embeddings for users
and items are defined as 𝐸𝑖𝑑 ∈ R( |U |+|I | )×𝑑 .2 N𝑖 denotes the set
of users that interacted with item 𝑖 , andN𝑢 denotes the set of items
that user 𝑢 interacted with.

2Matrices are denoted by uppercase letters and vectors by lowercase letters for clarity
and consistency (e.g., 𝑒𝑖,𝑖𝑑 represents the ID embedding vector for the 𝑖-th item, and
𝑒𝑢,𝑖𝑑 for the 𝑢-th user, where 𝑖, 𝑗 index items and 𝑢, 𝑣 index users).



SIGIR ’25, July 13–18, 2025, Padua, Italy Jiwan Kim, Hongseok Kang, Sein Kim, Kibum Kim, & Chanyoung Park

✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊𝟓
𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟒

𝒊𝟒

𝑝𝑖1,𝑣
𝑝𝑖2,𝑣
𝑝𝑖3,𝑣
𝑝𝑖4,𝑣
𝑝𝑖5,𝑣

3.3.1 Modality Reconstruction

(Section 3.2) Disentangling Modality Feature Module

Im
ag

e

𝑋𝑣
𝑓𝑣
𝑠

𝑓𝑡
𝑠Te

xt

𝐸𝑣
𝑠

𝐸𝑣
𝑔

𝐸𝑡
𝑔

𝐸𝑡
𝑠

Fi
lt

er
in

g

1

1. Pink dress with sparkling…
2. Casual blue jeans with…
3. Brown formal shoes with…
4. Green cap with a brim …
5. Casual boots with leather …

𝓛𝒄𝒍𝒖𝒃

𝓛𝑰𝒏𝒇𝒐𝑵𝑪𝑬

CF RecSys

ത𝐸𝑀

ത𝐹𝑀

𝓛𝑼𝑰−𝒂𝒍𝒊𝒈𝒏

෨𝐸𝑣
𝑠

෨𝐸𝑣
𝑔

෨𝐸𝑡
𝑔

෨𝐸𝑡
𝑠

ത𝐸𝑣
𝑠

ത𝐸𝑣
𝑔

ത𝐸𝑡
𝑔

ത𝐸𝑡
𝑠

𝓛𝒄𝒍𝒖𝒃

𝑖 𝑖Modality Missing Modality Available

𝐸𝑖𝑑

𝓛𝑩𝑴−𝒂𝒍𝒊𝒈𝒏

User-Item Interaction

𝓛𝒓𝒆𝒄𝒐𝒏

𝑃𝑢,𝑣

𝑃𝑢,𝑡

Preference 
Embeddings

𝐸𝑖𝑑

ID Embeddings

Reconstructed Feature

Generated Feature

Original Feature

𝑖1
𝑖3

𝑖5

𝑖4✓
✓

✓

G
ra

ph
 C

on
vo

lu
ti

on

ℎ𝑣

ℎ𝑡

𝑓𝑔

ത𝐸𝑣
𝑠

ത𝐸𝑣
𝑔

ത𝐸𝑡
𝑔

ത𝐸𝑡
𝑠

𝒢𝑣
𝑔

𝒢𝑣
𝑠

𝑃𝑖,𝑡

෠𝑋𝑣

A
gg

General Feature
 Aggregation for Image

𝒢𝑡
𝑠

𝒢𝑡
𝑔

𝑃𝑖,𝑣

𝑓𝑣
𝑑𝑒𝑐

ത𝐸𝑡
𝑠

𝓛𝒈𝒆𝒏
ത𝐸𝑡
𝑔

(Section 3.3) Missing Modality Generation Module

ത𝑋𝑣𝑓𝑣
𝑑𝑒𝑐

General Feature
 Aggregation for Text

ത𝐸𝑡
𝑔

ത𝐸𝑣
𝑔

Missing 
Modality?

Graph
Refinement

ത𝑋𝑡𝑓𝑡
𝑑𝑒𝑐

𝑃𝑢,𝑡

𝑃𝑢,𝑣

෠𝐸𝑡
𝑠

෠𝐸𝑣
𝑠

෠𝐸𝑣
𝑔

෠𝐸𝑡
𝑔

Yes

No ෠𝐸𝑡
𝑠

෠𝐸𝑡
𝑔

𝓛𝒈𝒆𝒏

𝑋𝑡 𝑖1
𝑖3

𝑖5

𝑖4

Original Features

Reconstructed 
Features

Figure 2: Overview of DGMRec framework. It consists of the Disentangling Modality Feature module and the Missing Modality
Generation module. In the Missing Modality Generation module, we illustrate the case where an item is associated with the
text modality while the image modality is missing.

3.2 Disentangling Modality Feature Module
Existing MRSs directly align modality features [6, 11] or combine
adjacency views across modalities [34, 38], obscuring unique char-
acteristics of modalities. To address this, we extract two types of
features—general and specific—from each modality using encoder
functions (Sec 3.2.1). These features are further refined through a
GCN-based item-item graph and information-driven disentangle-
ment (Sec 3.2.2).

3.2.1 Extracting Modality Features. To extract general 𝐸𝑔𝑚 and spe-
cific features 𝐸𝑠𝑚 for each modality 𝑚, we employ two separate
encoders composed of a fully-connected layer: the general encoder
𝑓 𝑔 applicable across all modalities and the specific encoder 𝑓 𝑠𝑚 tai-
lored to each modality𝑚.

𝐸
𝑔
𝑚 = 𝑓 𝑔 (ℎ𝑚 (𝑋𝑚)), 𝐸𝑠𝑚 = 𝑓 𝑠𝑚 (𝑋𝑚) (1)

where the general encoder 𝑓 𝑔 : R𝑑 → R𝑑 shares parameters across
modalities to extract common attributes, while the specific encoder
𝑓 𝑠𝑚 : R𝑑𝑚 → R𝑑 employs independent parameters to capture the
unique characteristics of each modality 𝑚. Moreover, since 𝑋𝑚
has different dimensions across modalities, we use another fully-
connected layer ℎ𝑚 : R𝑑𝑚 → R𝑑 to project each modality into a
unified dimension.

In addition, we introduce a Modality Preference Embedding
matrix for users, denoted as 𝑃𝑢,𝑚 ∈ R |U |×𝑑 , to more effectively
capture users’ modality preferences, which is then used to compute
the item’s modality preference matrix 𝑃𝑖,𝑚 ∈ R | I |×𝑑 as follows:

𝑝𝑖,𝑚 =
1

|N𝑖 |
∑︁
𝑢∈N𝑖

𝑝𝑢,𝑚 (2)

where 𝑝𝑢,𝑚 ∈ R𝑑 and 𝑝𝑖,𝑚 ∈ R𝑑 are the modality preference em-
bedding of user 𝑢 and item 𝑖 , respectively. As this item preference
embedding matrix 𝑃𝑖,𝑚 contains the modality preference of inter-
acted users, we use it to align the modality feature with the user

preference as follows: 3

𝐸𝑚 = 𝐸𝑚 ⊙ 𝜎 (𝑃𝑖,𝑚) (3)

where ⊙ is the element-wise product and 𝜎 is the sigmoid function.
We expect the denoised features 𝐸𝑚 to retain information relevant
to the user preference, leading to improved recommendations.

The denoisedmodality features are then enhanced throughGCNs
using an item-item graph. Specifically, we construct an adjacency
matrix 𝑆𝑚 with top-k similar items based on similarity scores of
items’ modality features 𝑋𝑚 where 𝑆𝑚 is computed as follows:

𝑆𝑚𝑖,𝑗 =
(𝑥𝑖,𝑚)⊤𝑥 𝑗,𝑚
∥𝑥𝑖,𝑚 ∥∥𝑥 𝑗,𝑚 ∥

(4)

As the backbone GCNs, we utilize LightGCN [9] for its computa-
tional simplicity and widespread adoption as follows:

𝐸
(𝑙 )
𝑚 = 𝑆𝑚 · 𝐸 (𝑙−1)

𝑚 ,where 𝐸
(0)
𝑚 = 𝐸𝑚 and 𝐸𝑚 = 𝐸

(𝐿)
𝑚 (5)

where 𝐸 (𝑙 )
𝑚 ∈ R | I |×𝑑 denotes the modality feature at the 𝑙-th layer

of graph convolution, 𝐿 is the number of layers. Note that we use the
last 𝐿-th layer representation as the item’s modality feature. Finally,
given the item’s final modality feature matrix 𝐸

(𝐿)
𝑚 , we compute

the user modality feature matrix 𝐹𝑚 ∈ R |U |×𝑑 by aggregating the
modality features of items the user has interacted with as follows:

𝑓𝑢,𝑚 =
1

|N𝑢 |
∑︁
𝑖∈N𝑢

𝑒𝑖,𝑚 (6)

3.2.2 Disentangling Modality Features. Separating encoders for
general and specific features alone is insufficient to achieve effec-
tive disentanglement. Therefore, we introduce information-based
approaches leveraging two contrastive losses: one reduces mutual
information between general and specific features within a single
modality, while the other enhances mutual information between
general features across multiple modalities.

To minimize the mutual information between general
and specific features within the same modality, we employ
a sample-based approach using the Contrastive Log-ratio Upper
3For notational convenience, the superscripts 𝑔 and 𝑠 , denoting general and specific
features, are omitted in this equation and subsequent equations where the context
makes their meaning clear.
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Bound (CLUB) [2] with variational distribution 𝑞𝜙 (·|·) with param-
eter 𝜙 to estimate conditional distribution 𝑝 (·|·). 𝑞𝜙 consisting of
2-layer MLPs.

L𝑐𝑙𝑢𝑏 =
∑︁
𝑖∈I

log𝑞𝜙 (𝑒
𝑔

𝑖,𝑚
|𝑒𝑠𝑖,𝑚) − 1

|I |
∑︁
𝑗∈I

log𝑞𝜙 (𝑒
𝑔

𝑗,𝑚
|𝑒𝑠𝑖,𝑚)

 (7)

Following [2], L𝑐𝑙𝑢𝑏 approximates the upper bound of mutual in-
formation between 𝐸

𝑔
𝑚 and 𝐸𝑠𝑚 . We iteratively minimize L𝑐𝑙𝑢𝑏

alongside other model parameters, encouraging modality’s general
and specific features to have complementary information.

To maximize the mutual information between general
features of different modalities, we adopt the InfoNCE loss [15]
to approximate a negative lower bound of mutual information.

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 =
∑︁
𝑖∈I

− log
exp(𝑒𝑔

𝑖,𝑚
· 𝑒𝑔

𝑖,𝑚′ )∑
𝑗∈I exp(𝑒𝑔

𝑖,𝑚
· 𝑒𝑔

𝑗,𝑚′ )
(8)

InfoNCE effectively aligns the general features of different modal-
ities (i.e., 𝐸𝑔𝑚 and 𝐸

𝑔

𝑚′ for different modalities𝑚,𝑚′), by mapping
them into the same latent space. Thus, minimizing InfoNCE loss
maximizes the lower bound of mutual information, ensuring better
alignment among the general features of multiple modalities.

The final loss for disentanglement is shown below:

L𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 = L𝑐𝑙𝑢𝑏 + L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 (9)

In summary, we expect L𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 , to effectively disentangle gen-
eral and specific features within a modality while aligning general
features across different modalities. These losses enable the utiliza-
tion of cross-modality information to generate missing modality
representations, maintaining well-aligned modalities and preserv-
ing their unique characteristics

3.3 Missing Modality Generation Module
As discussed in Section 3.2, modality features are disentangled into
general and specific components using an information-based ap-
proach. Building on these well-separated features, we train the
decoder to accurately reconstruct raw modality features (Sec 3.3.1).
Then, DGMRec generates general and specific features for missing
modalities in a tailored manner (Sec 3.3.2). These generated fea-
tures are then utilized to generate raw modality features and refine
the item-item graph, addressing the instability caused by missing
modalities (Sec 3.3.3).

3.3.1 Modality Feature Reconstruction. We employ an additional
decoder 𝑓 𝑑𝑒𝑐𝑚 : R𝑑 → R𝑑𝑚 for each modality𝑚 that reconstructs a
modality’s raw feature 𝑋𝑚 using general features 𝐸𝑔𝑚 and specific
features 𝐸𝑠𝑚 as follows:

𝑋𝑚 = 𝑓 𝑑𝑒𝑐𝑚 (𝐸𝑔𝑚 ⊕ 𝐸𝑠𝑚) (10)

where ⊕ denotes the concatenation operation. The reconstruction
process is guided by a reconstruction loss L𝑟𝑒𝑐𝑜𝑛 between raw
modality features 𝑋𝑚 and reconstructed modality features 𝑋𝑚 . It
ensures that the reconstructed features closely resemble raw fea-
ture, allowing DGMRec to accurately generate features for missing
modalities by leveraging the learned 𝐸𝑔𝑚 and 𝐸𝑠𝑚 .

L𝑟𝑒𝑐𝑜𝑛 =
∑︁
𝑖∈I

𝑀𝑆𝐸 (𝑥𝑖,𝑚, 𝑥𝑖,𝑚) (11)

where𝑀𝑆𝐸 is the mean squared error loss. That is, the disentangled
features 𝐸𝑔𝑚 and 𝐸𝑠𝑚 retain meaningful modality information to
accurately reconstruct 𝑋𝑚 , rather than being merely meaningless
representations of disentanglement.

3.3.2 Missing Modality Generation. To address missing modalities,
it is crucial to effectively generate both general and specific fea-
tures separately, which are used to generate raw modality feature
through decoders. Although these two features (general and spe-
cific) originate from the same modality, they possess fundamentally
different characteristics and thus require distinct approaches for
generation.

To generate general features 𝐸𝑔𝑚 , we leverage the original gen-
eral features 𝐸𝑔

𝑚′ from other modalities𝑚′, aligned by L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸

in Eq 8. As directly using these features could be unstable, we in-
troduce a general feature generator G𝑔

𝑚 , which consists of 2-layer
MLPs, for each modality𝑚 to generate general features as follows:

𝐸
𝑔
𝑚 = G𝑔

𝑚 (
⊕
𝑚′

𝐸
𝑔

𝑚′ ) (12)

where
⊕

denotes the concatenation operation applied across all
available modalities𝑚′. Note that when the input modality𝑚′ is
also missing (i.e., when two or more modalities are missing), we use
the mean of the modality features to ensure that the concatenated
vector maintains a consistent dimension regardless of the number
of missing modalities.

To generate specific features 𝐸𝑠𝑚 , information from other
modalities cannot be utilized. Instead, we leverage user modal-
ity preferences, which are aligned with the items’ modality features
as shown in Eq 3. Since the modality-specific knowledge of an item
is implicitly captured within the modality preferences of all users
associated with that item, a specific feature generator G𝑠

𝑚 for each
modality, which consists of 2-layer MLPs, uses this information to
generate the specific features for each item as follows:

𝐸𝑠𝑚 = G𝑠
𝑚 (𝑃𝑖,𝑚) (13)

To guarantee that the generated features preserve the modality’s
original information, we introduce the generation loss L𝑔𝑒𝑛 , which
encourages the original features (𝐸𝑔𝑚 , 𝐸𝑠𝑚) and the generated fea-
tures (𝐸𝑔𝑚 , 𝐸𝑠𝑚) to be as similar as possible as follows:

L𝑔𝑒𝑛 =
∑︁
𝑖∈I

(
𝑀𝑆𝐸 (𝑒𝑔

𝑖,𝑚
, 𝑒
𝑔

𝑖,𝑚
) +𝑀𝑆𝐸 (𝑒𝑠𝑖,𝑚, 𝑒𝑠𝑖,𝑚)

)
(14)

Importantly, these two generation-related losses (L𝑟𝑒𝑐𝑜𝑛 and L𝑔𝑒𝑛)
are computed only for items with available modalities, preventing
missing modality items from hindering the training process.

3.3.3 Refining Item-Item Graph via Generated Features. At regular
intervals determined by a hyperparameter (i.e., every 5 epochs),
DGMRec generates features for items with missing modalities. The
generated 𝐸𝑔𝑚 and 𝐸𝑠𝑚 are then used to generate𝑋𝑚 , approximating
the raw feature 𝑋𝑚 using the decoder as follows:

𝑋𝑚 = 𝑓 𝑑𝑒𝑐𝑚 (𝐸𝑔𝑚 ⊕ 𝐸𝑠𝑚) (15)

However, simply substituting raw modality features with the gener-
ated features is insufficient for addressing the issues caused by miss-
ing modalities. As observed in Figure 1, SOTA MRSs that heavily
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rely on modality features using item-item graphs suffer severe per-
formance degradation. This occurs because inappropriate edges that
are formed when NN features are injected disrupt stable training
and hinder the propagation of true semantic relationships. Hence,
we construct a new adjacency matrix 𝑆𝑚 that accurately reflects
the semantic relationships among items, based on the generated
raw features 𝑋𝑚 , following the same process shown in Eq 4.

Moreover, to prevent the instability in the model training caused
by abrupt graph changes, we propose an adaptive update strat-
egy to smoothly integrate new connections using the adjustable
hyperparameter 𝛼 as follows:

𝑆𝑚 = 𝛼𝑆𝑚 + (1 − 𝛼)𝑆𝑚 (16)

This is expected to enhance the graph structure and capture richer
semantic relationships between items.

It is important to note that we only update the edges associated
with items with missing modalities, and construct directed edges
from items containing a modality to those with missing modalities.

The purpose of this design is twofold: It prevents contamina-
tion of original modality features by under-trained generated fea-
tures, thereby avoiding instability during training. Additionally, by
computing similarity scores solely for pairs involving items with
missing modalities, the process reduces computational overhead,
ensuring both stability and efficiency in graph refinement. This ap-
proach enables the item-item graph to capture meaningful semantic
relationships while maintaining robustness during training.
Comparisons with prior studies. We would like to emphasize
that our approach to refining the item-item Graph differs from
the method used in [34, 35], where the adjacency matrix is first
constructed using latent vectors and then jointly optimized with
the recommendation loss to enhance performance. Specifically, our
approach optimizes a decoder solely to accurately reconstruct raw
modality features, which is subsequently used to create the new
adjacency matrix. When missing modalities exist, our approach can
effectively connect edges for items with missing modalities with
generated features through the decoder, whereas their method can-
not achieve this due to the lack of handling for missing modalities.

3.4 Alignment for Recommendation Task
Modality features effectively capture semantic content but lack
the collaborative knowledge essential for recommendation tasks
[10, 33]. To address this limitation, we propose two alignment meth-
ods that bridge collaborative filtering with modality features. By
aligning modality features extracted from pre-trained models with
ID embeddings, we seamlessly integrate modality knowledge and
collaborative knowledge.

3.4.1 Fusing ID embedding and Modality Features. The final modal-
ity representation is computed by first obtaining the general fea-
tures of all modalities through mean pooling. Subsequently, these
combined general features are mean pooled with the specific fea-
tures of the modalities to produce the final modality representation.

𝐸𝑀 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑚∈M (𝐸𝑠𝑚, 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑚′∈M (𝐸𝑔
𝑚′ ))

𝐹𝑀 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑚∈M (𝐹𝑠𝑚, 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑚′∈M (𝐹𝑔
𝑚′ ))

(17)

where M is a set of all modalities. Incorporating modality features,
the final recommendation representation for the user and item is

Dataset # Users # Items # Interactions Sparsity Modalities
Image Text Audio

Baby 19,445 7,050 160,792 99.88% ✓ ✓ ✗
Sports 35,598 18,357 296,337 99.95% ✓ ✓ ✗
Clothing 39,387 23,033 278,677 99.97% ✓ ✓ ✗
TikTok 9,308 6,710 68,722 99.89% ✓ ✓ ✓

Table 1: Statistics of Datasets

derived by combining the ID embedding from the CF model with
the respective modality representations as follows:

𝐸𝑢 = 𝐸𝑢,𝑖𝑑 + 𝐹𝑀 , 𝐸𝑖 = 𝐸𝑖,𝑖𝑑 + 𝐸𝑀 (18)

The final recommendation score 𝑦𝑢,𝑖 is computed by the inner
product between the user and item representations as follows:

𝑦𝑢,𝑖 = 𝑒⊤𝑢 𝑒𝑖 (19)

3.4.2 Behavior-Modality Alignment. While modality features are
important for item representations, the lack of collaborative knowl-
edge makes it difficult to capture user-item relationships [10, 33]. To
alleviate this challenge, we incorporate collaborative knowledge by
aligning user behavior with modality features through a contrastive
loss.

L𝐵𝑀-𝑎𝑙𝑖𝑔𝑛 =
∑︁
𝑢∈U

− log
exp(𝑒𝑢,𝑖𝑑 · 𝑓𝑢,𝑀 )∑

𝑣∈U exp(𝑒𝑢,𝑖𝑑 · 𝑓𝑣,𝑀 )

+
∑︁
𝑖∈I

− log
exp(𝑒𝑖,𝑖𝑑 · 𝑒𝑖,𝑀 )∑

𝑗∈I exp(𝑒𝑖,𝑖𝑑 · 𝑒 𝑗,𝑀 )

(20)

3.4.3 User-Item Alignment. We further refine modality features
among users and items to ensure coherence within each modality
as follows:

L𝑈 𝐼 -𝑎𝑙𝑖𝑔𝑛 =
∑︁

𝑚∈M

∑︁
(𝑢,𝑖 ) ∈O

− log
exp(𝑓𝑢,𝑚 · 𝑒𝑖,𝑚)∑

𝑗∈I exp(𝑓𝑢,𝑚 · 𝑒 𝑗,𝑚)
(21)

where O is a set of positive observation in interaction matrix R
(i.e., (𝑢, 𝑖) is contained in O when R𝑢,𝑖 = 1).

By aligning the modality features of an item with those of users
who interactedwith it,DGMRec captures recommendation-relevant
knowledge, enhancing the consistency of the modality features.

The final alignment loss is defined as:

L𝑎𝑙𝑖𝑔𝑛 = L𝐵𝑀-𝑎𝑙𝑖𝑔𝑛 + L𝑈 𝐼 -𝑎𝑙𝑖𝑔𝑛 (22)

By combining L𝐵𝑀-𝑎𝑙𝑖𝑔𝑛 and L𝑈 𝐼 -𝑎𝑙𝑖𝑔𝑛 , our approach effectively
integrates modality features with collaborative filtering knowledge,
resulting in a robust and comprehensive recommendation system.

To optimize user and item representations for the recommenda-
tion task, we employ the Bayesian Personalized Ranking (BPR) loss
[18],

L𝑏𝑝𝑟 =
∑︁

(𝑢,𝑖+,𝑖− ) ∈D

(
−𝜎 (𝑦𝑢,𝑖+ − 𝑦𝑢,𝑖− )

)
(23)

where D = {(𝑢, 𝑖+, 𝑖−) | (𝑢, 𝑖+) ∈ O, (𝑢, 𝑖−) ∉ O} represents the
dataset of triplets, and 𝜎 () denotes the sigmoid function.

The final objective function of DGMRec is give by:

L = L𝑏𝑝𝑟 + L𝑟𝑒𝑐𝑜𝑛 + L𝑔𝑒𝑛 + 𝜆1L𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 + 𝜆2L𝑎𝑙𝑖𝑔𝑛 (24)

where 𝜆1, 𝜆2 are hyper-parameters.
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Table 2: Performance Comparison. The best and runner-ups are marked in bold and underlined, respectively.

Missing Modality Setting

Dataset Baby Sports Clothing TikTok
Metric R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50

CF

MF 0.0611 0.1091 0.0273 0.0370 0.0707 0.1112 0.0327 0.0416 0.0346 0.0533 0.0164 0.0201 0.0558 0.0909 0.0220 0.0289
NGCF 0.0602 0.1137 0.0258 0.0366 0.0701 0.1215 0.0304 0.0408 0.0422 0.0728 0.0176 0.0237 0.0722 0.1284 0.0284 0.0394

LightGCN 0.0733 0.1323 0.0320 0.0440 0.0829 0.1369 0.0379 0.0488 0.0514 0.0818 0.0227 0.0288 0.0916 0.1576 0.0406 0.0536
SGL 0.0804 0.1422 0.0348 0.0473 0.0917 0.1492 0.0414 0.0531 0.0600 0.0936 0.0271 0.0338 0.0939 0.1490 0.0403 0.0521

SimGCL 0.0809 0.1409 0.0349 0.0471 0.0910 0.1465 0.0410 0.0523 0.0542 0.0833 0.0252 0.0310 0.0952 0.1451 0.0401 0.0509

M
ul
ti-
M
od

al
Re

co
m
m
en
de
rs

VBPR 0.0514 0.0937 0.0213 0.0299 0.0741 0.1229 0.0328 0.0427 0.0462 0.0737 0.0207 0.0226 0.0410 0.0699 0.0172 0.0229
MMGCN 0.0519 0.0991 0.0215 0.0310 0.0509 0.0913 0.0215 0.0297 0.0289 0.0530 0.0120 0.0168 0.0883 0.1431 0.0372 0.0484
GRCN 0.0644 0.1151 0.0274 0.0377 0.0681 0.1157 0.0300 0.0397 0.0381 0.0644 0.0161 0.0214 0.0716 0.1257 0.0283 0.0389
SLMRec 0.0753 0.1254 0.0340 0.0422 0.0914 0.1462 0.0415 0.0526 0.0624 0.0979 0.0281 0.0351 0.0932 0.1523 0.0364 0.0480
BM3 0.0683 0.1235 0.0296 0.0408 0.0908 0.1466 0.0400 0.0513 0.0591 0.0920 0.0268 0.0334 0.0768 0.1215 0.0322 0.0409

LATTICE 0.0738 0.1297 0.0319 0.0432 0.0867 0.1401 0.0306 0.0384 0.0581 0.0929 0.0262 0.0332 0.0824 0.1353 0.0372 0.0477
MGCN 0.0833 0.1389 0.0366 0.0481 0.0941 0.1525 0.0425 0.0544 0.0665 0.1052 0.0300 0.0377 0.0870 0.1395 0.0356 0.0460
LGMRec 0.0813 0.1410 0.0352 0.0471 0.0906 0.1496 0.0403 0.0522 0.0624 0.1015 0.0277 0.0355 0.0791 0.1376 0.0335 0.0450
DAMRS 0.0804 0.1390 0.0355 0.0474 0.0941 0.1526 0.0416 0.0534 0.0670 0.1066 0.0301 0.0380 0.1044 0.1638 0.0452 0.0569
GUME 0.0835 0.1429 0.0369 0.0489 0.0947 0.1554 0.0424 0.0546 0.0639 0.1016 0.0291 0.0366 0.0968 0.1645 0.0389 0.0524

M
M
A

RS
s CI2MG 0.0720 0.1285 0.0305 0.0420 0.0717 0.1179 0.0331 0.0425 0.0523 0.0845 0.0237 0.0301 0.0772 0.1284 0.0327 0.0429

MILK 0.0427 0.0763 0.0182 0.0250 0.0362 0.0626 0.0155 0.0209 0.0226 0.0376 0.0094 0.0124 0.0404 0.0640 0.0184 0.0230
SIBRAR 0.0480 0.0888 0.0207 0.0289 0.0434 0.0758 0.0190 0.0255 0.0264 0.0453 0.0110 0.0148 0.0548 0.0854 0.0220 0.0280
DGMRec 0.0897 0.1531 0.0404 0.0528 0.1024 0.1625 0.0462 0.0584 0.0725 0.1134 0.0324 0.0406 0.1093 0.1773 0.0476 0.0611
Improv. 7.43% 7.14% 9.49% 7.98% 8.13% 4.57% 8.71% 6.96% 8.21% 6.00% 7.64% 6.84% 4.69% 7.78% 5.31% 7.38%

Missing Modality + New Items Setting

Dataset Baby Sports Clothing TikTok
Metric R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50

CF

MF 0.0349 0.0583 0.0174 0.0228 0.0376 0.0598 0.0201 0.0253 0.0196 0.0288 0.0100 0.0120 0.0286 0.0464 0.0112 0.0148
NGCF 0.0336 0.0599 0.0160 0.0220 0.0389 0.0648 0.0196 0.0255 0.0262 0.0418 0.0124 0.0158 0.0443 0.0737 0.0186 0.0246

LightGCN 0.0434 0.0723 0.0218 0.0285 0.0458 0.0788 0.0240 0.0302 0.0290 0.0457 0.0147 0.0184 0.0527 0.0829 0.0245 0.0306
SGL 0.0434 0.0682 0.0228 0.0285 0.0484 0.0788 0.0251 0.0316 0.0337 0.0505 0.0173 0.0210 0.0548 0.0775 0.0247 0.0293

SimGCL 0.0391 0.0630 0.0208 0.0262 0.0475 0.0750 0.0242 0.0313 0.0307 0.0492 0.0159 0.0200 0.0550 0.0771 0.0245 0.0289

M
ul
ti-
M
od

al
Re

co
m
m
en
de
rs

VBPR 0.0347 0.0640 0.0177 0.0244 0.0393 0.0641 0.0200 0.0257 0.0265 0.0414 0.0133 0.0166 0.0244 0.0417 0.0118 0.0221
MMGCN 0.0326 0.0596 0.0157 0.0218 0.0274 0.0489 0.0133 0.0182 0.0170 0.0308 0.0079 0.0110 0.0439 0.0599 0.0186 0.0218
GRCN 0.0347 0.0621 0.0170 0.0233 0.0368 0.0606 0.0185 0.0239 0.0226 0.0379 0.0109 0.0143 0.0378 0.0661 0.0166 0.0223
SLMRec 0.0434 0.0702 0.0223 0.0284 0.0477 0.0755 0.0245 0.0308 0.0344 0.0526 0.0176 0.0217 0.0548 0.0775 0.0247 0.0293
BM3 0.0407 0.0717 0.0204 0.0274 0.0496 0.0796 0.0255 0.0324 0.0317 0.0496 0.0163 0.0202 0.0588 0.0869 0.0262 0.0318

LATTICE 0.0423 0.0730 0.0213 0.0283 0.0432 0.0713 0.0218 0.0283 0.0344 0.0539 0.0173 0.0216 0.0444 0.0742 0.0209 0.0269
MGCN 0.0446 0.0802 0.0230 0.0302 0.0478 0.0775 0.0240 0.0316 0.0358 0.0562 0.0182 0.0228 0.0357 0.0694 0.0140 0.0208
LGMRec 0.0450 0.0772 0.0230 0.0303 0.0462 0.0742 0.0236 0.0300 0.0353 0.0557 0.0175 0.0221 0.0388 0.0632 0.0142 0.0191
DAMRS 0.0455 0.0779 0.0229 0.0304 0.0480 0.0784 0.0248 0.0317 0.0380 0.0583 0.0192 0.0237 0.0598 0.0872 0.0267 0.0333
GUME 0.0447 0.0795 0.0225 0.0304 0.0476 0.0776 0.0244 0.0313 0.0357 0.0563 0.0179 0.0224 0.0567 0.0918 0.0217 0.0289

M
M
A

RS
s CI2MG 0.0415 0.0716 0.0210 0.0279 0.0437 0.0718 0.0226 0.0290 0.0294 0.0461 0.0149 0.0186 0.0427 0.0660 0.0188 0.0235

MILK 0.0247 0.0429 0.0120 0.0162 0.0192 0.0323 0.0093 0.0123 0.0133 0.0226 0.0064 0.0085 0.0212 0.0332 0.0105 0.0129
SIBRAR 0.0280 0.0495 0.0138 0.0188 0.0257 0.0435 0.0128 0.0169 0.0153 0.0259 0.0070 0.0094 0.0351 0.0527 0.0154 0.0190
DGMRec 0.0519 0.0876 0.0257 0.0336 0.0532 0.0845 0.0276 0.0348 0.0413 0.0631 0.0211 0.0260 0.0639 0.0973 0.0285 0.0353
Improv. 14.06% 9.22% 11.73% 10.53% 7.26% 6.16% 8.67% 7.41% 8.68% 8.23% 9.89% 9.70% 6.86% 5.99% 6.74% 6.00%

4 Experiment
4.1 Experimental Settings
Datasets.We use datasets with diverse modalities, including the
Amazon Baby, Sports, and Clothing datasets, as well as the TikTok
dataset with 5-core setting following previous works [11, 23, 29, 34].
The Amazon datasets contain image and text modalities. Modal-
ity features in Amazon datasets are extracted using the same pre-
trained models following [37] (i.e., image with a CNN model [7]
and text with a SBERT [17]). The TikTok dataset, published by
TikTok4, includes image, text, and audio modalities. However, the
raw features and pre-trained models used for feature extraction are
not publicly available. The statistics of datasets are summarized in
Table 1.

Missing Modality Setting. Similar to other MMA-RSs [1, 5, 12],
we introduce settings where missing modalities are present. For
datasets with two modalities, items were evenly divided such that

4https://www.tiktok.com/

1/3 of items have 0, 1, or 2 missing modalities. For three modali-
ties, 1/4 of items have 0, 1, 2, or 3 missing modalities. The specific
modality chosen as missing was randomly selected for each item.

New Items Setting. Following the setup of [1], we select 20% of
the items as new items that appeared only in the test set, ensuring
these items were unseen during the training and validation phases.
This setup evaluates the model’s ability to generalize to previously
unseen items, testing its performance in realistic scenarios.

Compared Methods. To ensure fair comparisons, we evaluated
DGMRec against a wide range of models, including 5 traditional
CF models, 10 multi-modal RSs, and 3 missing modality-aware RSs.
• Traditional CF Models: Matrix factorization methods (MFBPR
[18]), GNN-based methods (NGCF [22] and LightGCN [9]), and
contrastive learning methods (SGL [26] and SimGCL [30]).

• Multi-modal Recommender Systems5: Feature-based meth-
ods (VBPR [8], MMGCN [25], GRCN [24], SLMRec [19], BM3
[39] and LGMRec [6]), Graph-based methods (LATTICE [34] and
DAMRS [29]) and Hybrid methods (MGCN [31] and GUME [11]).

5The missing modality feature is injected based on the NN-injection approach [13].

https://www.tiktok.com/
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Figure 3: Performance on various missing levels on Amazon
Baby and TikTok datasets.

• Missing Modality-Aware Recommender Systems: Robust
learning methods that utilize invariant learning (MILK [1]) and
single-branch network (SIBRAR [5]), and generation-based meth-
ods that utilize Optimal Transport and hypergraphs (CI2MG
[12]).

EvaluationMetrics.We split each dataset into training, validation,
and test sets with 8:1:1 following [6, 11, 29]. For evaluation, we
employ the widely used Recall@K and NDCG@K metrics with K =
20 and 50. We denote Recall and NDCG as R and N, respectively.

Implementation We implement DGMRec and other baselines in
PyTorch [16]. We adopt Adam [4] as optimizer. The embedding
dimension is fixed to 64. For DGMRec, the hyperparameters 𝜆1 and
𝜆2 are tuned in {1.0, 1e-1, 1e-2, 1e-3}, and 𝜏 in contrastive learning
and 𝛼 for adjusting graph structure are tuned from [0,1] with an
interval of 0.2. The interval of modality generation is fixed to 5
epochs. For convergence consideration, the early stopping and total
epochs are fixed at 30 and 1,000, respectively.

4.2 Performance Comparison
For comprehensive evaluations of DGMRec, we perform evalu-
ations under various scenarios: overall performance (Sec 4.2.1),
different missing modality levels (Sec 4.2.2), varying missing ratios
(Sec 4.2.3), and cross-modal retrieval (Sec 4.2.4).

4.2.1 Overall Performance. In Table 2, we present the performance
of DGMRec and other models under theMissing Modality Set-
ting. Additionally, to simulate a more realistic and challenging
scenario, we evaluate performance under the Missing Modal-
ity and New Items Setting, which combines missing modalities
with new items. We have the following observations: 1) DGM-
Rec consistently outperforms existing MRSs and MMA-RSs across
all datasets in both settings. This highlights the benefit of the pro-
posed generation-based approach to handle missing modalities
compared with existing injection-based methods. By dynamically
generating missing modality features, DGMRec achieves robust
and superior performance compared to baseline methods. 2) The
performance gap between the best CF model and the best MRSs
narrows when comparing the Missing Modality Setting with the
combined Missing Modality and New Item Setting, while the im-
provement achieved by DGMRec increases. This demonstrates the
effectiveness of DGMRec’s modality generationmodule in handling
new items. 3) The MMA-RSs based on contents, MILK and SIBRAR,
exhibit lower performance compared to CF models. Additionally,
CI2MG, which leverages CF knowledge by utilizing LightGCN as

(a) Performance on various missing ratio (b) Relative performance drop

Figure 4: (a) Performance on various missing ratios, and (b)
relative performance drop on Amazon Baby dataset.

its backbone, performs worse than the vanilla LightGCN. This indi-
cates that generating modality features without proper alignment
(i.e., Optimal Transport) can lead to performance degradation.

4.2.2 Performance at Different Missing Modality Levels. In Figure
3, we evaluate the performance of DGMRec across different levels
of missing modalities. The missing modality settings were con-
sistent with those used in Section 4.2.1, and comparisons were
made with LGMRec, DAMRS, and GUME. For better analysis, we
reported the performance improvement of DGMRec relative to the
best-performing baseline in a line plot. 1)DGMRec consistently out-
performed all baselines across all levels of missing modalities. This
demonstrates that DGMRec not only obtains meaningful represen-
tations through disentangling modality features but also effectively
generates missing modalities to enhance performance. 2) Perfor-
mance gains were greater when some modalities were available
compared to cases with no modalities (i.e., missing one in Baby
dataset and missing one & two in TikTok dataset). This highlights
the importance of utilizing other available modalities to generate
general features during the generation process. 3) Even in scenarios
where no modalities were available (i.e., missing two in Baby and
missing three in TikTok), DGMRec still achieved significant per-
formance improvements. This demonstrates that even in situations
where general features cannot be generated due to the complete
absence of available modalities, the specific features generated us-
ing the preference-based approach with interaction data remain
effective.

4.2.3 Performance under Varying Missing Ratios. We conduct ex-
periments with missing ratios set to 0% (No Missing Modality), 20%,
40%, 60%, and up to an extreme scenario of 80%. For each setting,
items with missing modalities and the types of missing modalities
were randomly selected, with selections kept consistent across ex-
periments. For example, if an item’s image modality was missing at
20%, the same item’s image modality remained missing at 40%. In
Figure 4(a), we present the results of DGMRec in comparison with
LGMRec, DAMRS, and GUME on the Amazon Baby dataset using
a bar plot. Additionally, the performance improvement of DGM-
Rec relative to the best-performing baseline is shown in a line plot.
1) Across all missing ratios, DGMRec consistently outperformed
all baselines, except for the 0% baseline, where its performance
was only slightly lower. Notably, as GUME’s performance dropped
significantly with increasing missing ratios, the performance gap
between DGMRec and the other models widened substantially,
reaching up to 10.05% at a missing ratio of 80%. This demonstrates
DGMRec’s robustness across a wide range of missing ratios, from
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low levels to extreme cases. To further confirm that DGMRec’s
robust performance is not solely attributed to its high performance
at the 0% missing ratio (No Missing Modality), we also show the
percentage performance drop at each missing ratio relative to the
0% baseline in figure 4(b). 2) The performance drop of DGMRecwas
consistently smaller compared to other models , with 2.7% (3.2%
vs. 5.9%) at 20% missing and 4.9% (10.2% vs. 15.1%) at a missing
ratio of 80%. This highlights that DGMRec not only achieves high
performance by effectively leveraging modality features through
the Disentangling Modality Feature module but also demonstrates
robust capability in addressing missing modalities via the Missing
Modality Generation module.

Table 3: Results (Hit@10 and Hit@20) on Cross-Modal Re-
trieval of DGMRec. NNmeans the Nearest Neighbor method.

Datasets Baby
Missing 1 Modality Missing 2 Modalities
NN DGMRec NN DGMRec

Hit@10 0.1344 0.3577 - 0.3496
Hit@20 0.1999 0.3801 - 0.3690

4.2.4 Cross-Modal Retrieval via Modality Generation. In this sec-
tion, we demonstrate the potential of DGMRec’s generation-based
approach for real-world industry applications by demonstrating
its ability to retrieve items with missing modalities—something
that conventional MRSs cannot achieve. For comparisons, we em-
ployed a nearest-neighbor (NN) approach since existing MRSs are
completely inapplicable for this task. Specifically, the NN approach
retrieves the top-5 similar items based on available modalities while
utilizing the mean of the existing modality features for retrieval.

Table 3 presents the retrieval performance for cases with one
missing modality and scenarios with two missing modalities (i.e., all
modalities missing). DGMRec significantly outperforms NN meth-
ods when a single modality is missing. Moreover, even in the chal-
lenging case where all modalities are missing, DGMRec achieves
remarkable performance, whereas NN fails entirely.

We would like to emphasize that by leveraging generated modal-
ity features, DGMRec enables the retrieval of similar items and
provides meaningful descriptions, even when modalities are miss-
ing during the item-streaming process. This highlights DGMRec’s
strong practical applicability in real-world and industrial scenar-
ios, where delivering effective recommendations and descriptions
despite incomplete modality data is crucial.

Table 4: Ablation studies on the components of DGMRec.
Datasets Baby Clothing TikTok

Metric R@20 N@20 R@20 N@20 R@20 N@20
DGMRec 0.0897 0.0404 0.0725 0.0324 0.1093 0.0476

w/o Disentangle 0.0756 0.0331 0.0596 0.0268 0.0985 0.0419
w/o CLUB 0.0854 0.0373 0.0617 0.0277 0.1031 0.0452
w/o InfoNCE 0.0778 0.0347 0.0631 0.0280 0.1001 0.0429

w/o Generation 0.0848 0.0373 0.0646 0.0282 0.0988 0.0402
w/o Recon Loss 0.0872 0.0376 0.0703 0.0313 0.1034 0.0434
w/o Gen Loss 0.0862 0.0374 0.0647 0.0284 0.1041 0.0438

w/o Alignment 0.0554 0.0248 0.0392 0.0142 0.0745 0.0335
w/o UI-align 0.0789 0.0335 0.0634 0.0284 0.0903 0.0389
w/o BM-align 0.0811 0.0346 0.0576 0.0260 0.1011 0.0422

4.3 Model Analysis
4.3.1 Ablation Study. In Table 4, we conducted ablation studies
to highlight the contribution of each component in DGMRec. In
general, excluding any loss resulted in a performance decline across
all datasets. More precisely, 1) excluding L𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 led to a per-
formance drop, demonstrating the effectiveness of disentangling
modality features. This implies that modality disentanglement
is effective for capturing modality representation. 2) Removing
generation-related losses such as L𝑟𝑒𝑐𝑜𝑛 and L𝑔𝑒𝑛 resulted in per-
formance declines. These losses were introduced to effectively gen-
erate missing modalities, indicating that aligning reconstructed fea-
tures with original features is crucial. 3) The removal of L𝑎𝑙𝑖𝑔𝑛 led
to the most significant performance degradation. This emphasizes
the critical role of aligningmodality features with the CF knowledge.
Alignment with the CF knowledge ensures that modality features
contribute effectively to the recommendation, demonstrating its
importance in DGMRec.

Figure 5: (a) Visualization of disentangled modality features
and (b) similarity score between the features during training

4.3.2 Impact of Modality Disentanglement. To evaluate the effec-
tiveness of the Disentangling Modality Feature module, we visu-
alized the general and specific modality features of 500 randomly
selected items from the Baby dataset using TSNE [20] and tracked
their similarity scores during training to observe the disentangle-
ment process. As shown in Figure 5(a), specific features are well-
separated, while general features appear more entangled, reflect-
ing their shared nature across modalities. Additionally, Figure 5(b)
shows that the similarity scores between general and specific fea-
tures within the same modality gradually decrease during training,
while the similarity scores between general features across different
modalities increase. These trends demonstrate the effectiveness of
the disentanglement module in DGMRec.

Table 5: Time Complexity of compared methods.
Dataset Baby Sports Clothing
(sec) Train Inference Total Train Inference Total Train Inference Total

LGMRec 2.81 3.39 171.5 7.01 6.54 603.2 6.58 7.20 559.1
DAMRS 3.56 3.33 238.7 14.99 6.93 1723.6 16.53 7.23 1934.2
GUME 2.74 2.94 152.1 9.45 7.32 662.1 9.29 7.96 667.2

DGMRec 2.63 3.38 210.4 8.83 6.18 666.5 9.91 7.32 802.4

4.3.3 Time Complexity Analysis. The missing modality generation
process in DGMRec can incur additional computational overhead
per specific epoch. To evaluate the complexity of this process, we
compared three key metrics: 1) the average time per training epoch
(Train), 2) the total inference time (Inference), and 3) the overall
training time throughout the entire process (Total) across three
Amazon datasets in Table 5.
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We have the following observations: 1) For the relatively small
Baby dataset, the time required by DGMRec is nearly identical to
that of other models, demonstrating that the additional processes in
DGMRec do not create noticeable inefficiencies in smaller datasets.
2) In the larger Sports and Clothing datasets, while DGMRec in-
curs slightly higher overhead due to the modality generation and
graph refinement processes, the difference remains modest. Consid-
ering the significant performance gains achieved by DGMRec, we
argue that this additional time cost is reasonable, indicating that
DGMRec remains competitive even in larger-scale datasets.

Figure 6: Performance on different hyper-parameters

4.3.4 Parameter Sensitivity. In Figure 6, we investigate the impact
of every hyperparameter in DGMRec, i.e., 𝜆1 for L𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 , 𝜆2
for L𝑎𝑙𝑖𝑔𝑛 , and 𝛼 for graph refinement, on the Baby and Clothing
datasets. 1) The results show that both 𝜆1 and 𝜆2 achieve the best
performance when set to 0.01, with significant performance drops
observed when either value is too low or too high. Notably, 𝜆2,
which directly affects performance through alignment loss, is found
to be more sensitive than 𝜆1. 2) For the balancing hyperparameter 𝛼 ,
a value of 0.0—indicating no graph refinement—leads to the lowest
performance, emphasizing the importance of the graph refinement
process in DGMRec. Moreover, the best results are achieved with
moderate 𝛼 values, rather than extremes like 1.0, underscoring the
need to maintain a balanced approach.

5 Conclusion
In this paper, we propose a novel model, DGMRec that addresses
two key challenges: 1) Missing modality scenarios are not suffi-
ciently addressed, and 2) Unique characteristics of modalities are
overlooked. The core idea of DGMRec lies in effectively disen-
tangling general and specific modality features, which are then
utilized to generate missing modalities in a fine-grained manner.
These two modules work synergistically in DGMRec framework.
As a result,DGMRec achieves high performance in realistic settings
thus demonstrating its strong potential for industrial applications,
including information retrieval tasks and scenarios with extremely
missing modalities.
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